The correct answer is Choice A.
Since the two given equations are both linear, they can cross at a point, overlap entirely, or simply be parallel and never intersect each other.

Alternatively, Substitute $y$ from the first equation into the second equation to calculate the intersection points of the two equations which will give the number of intersections.

Choices B, C, and D are incorrect since there are no intersections.
✨ Expert's Tip ✨
An alternate method is to plot both equations on a graph and find the number of intersection points.